RAR fits to individual galaxies

Galaxy By Louis Spencer JR |

The radial acceleration relation connects what we see in visible mass with what we get in galaxy dynamics. This is true in a statistical sense, with remarkably little scatter. The SPARC data are consistent with a single, universal force law in galaxies. One that appears to be sourced by the baryons alone.

This was not expected with dark matter. Indeed, it would be hard to imagine a less natural result. We can only salvage the dark matter picture by tweaking it to make it mimic its chief rival. This is not a healthy situation for a theory.

On the other hand, if these results really do indicate the action of a single universal force law, then it should be possible to fit each individual galaxy. This has been done many times before, with surprisingly positive results. Does it work for the entirety of SPARC?

For the impatient, the answer is yes. Graduate student Pengfei Li has addressed this issue in a paper in press at A&A. There are some inevitable goofballs; this is astronomy after all. But by and large, it works much better than I expected – the goof rate is only about 10%, and the worst goofs are for the worst data.

Fig. 1 from the paper gives the example of NGC 2841. This case has been historically problematic for MOND, but a good fit falls out of the Bayesian MCMC procedure employed.  We marginalize over the nuisance parameters (distance and inclination) in addition to the stellar mass-to-light ratio of disk and bulge. These come out a tad high in this case, but everything is within the uncertainties. A long standing historical problem is easily solved by application of Bayesian statistics.

RAR fit (equivalent to a MOND fit) to NGC 2841. The rotation curve and components of the mass model are shown at top left, with the fit parameters at top right. The fit is also shown in terms of acceleration (bottom left) and where the galaxy falls on the RAR (bottom right).

Another example is provided by the low surface brightness (LSB) dwarf galaxy IC 2574. Note that like all LSB galaxies, it lies at the low acceleration end of the RAR. This is what attracted my attention to the problem a long time ago: the mass discrepancy is large everywhere, so conventionally dark matter dominates. And yet, the luminous matter tells you everything you need to know to predict the rotation curve. This makes no physical sense whatsoever: it is as if the baryonic tail wags the dark matter dog.

IC2574_RAR_MCMCRAR fit for IC 2574, with panels as in the figure above.

In this case, the mass-to-light ratio of the stars comes out a bit low. LSB galaxies like IC 2574 are gas rich; the stellar mass is pretty much an afterthought to the fitting process. That’s good: there is very little freedom; the rotation curve has to follow almost directly from the observed gas distribution. If it doesn’t, there’s nothing to be done to fix it. But it is also bad: since the stars contribute little to the total mass budget, their mass-to-light ratio is not well constrained by the fit – changing it a lot makes little overall difference. This renders the formal uncertainty on the mass-to-light ratio highly dubious. The quoted number is correct for the data as presented, but it does not reflect the inevitable systematic errors that afflict astronomical observations in a variety of subtle ways. In this case, a small change in the innermost velocity measurements (as happens in the THINGS data) could change the mass-to-light ratio by a huge factor (and well outside the stated error) without doing squat to the overall fit.

We can address statistically how [un]reasonable the required fit parameters are. Short answer: they’re pretty darn reasonable. Here is the distribution of 3.6 micron band mass-to-light ratios.

MLdisk_RAR_MCMCHistogram of best-fit stellar mass-to-light ratios for the disk components of SPARC galaxies. The red dashed line illustrates the typical value expected from stellar population models.

From a stellar population perspective, we expect roughly constant mass-to-light ratios in the near-infrared, with some scatter. The fits to the rotation curves give just that. There is no guarantee that this should work out. It could be a meaningless fit parameter with no connection to stellar astrophysics. Instead, it reproduces the normalization, color dependence, and scatter expected from completely independent stellar population models.

The stellar mass-to-light ratio is practically inaccessible in the context of dark matter fits to rotation curves, as it is horribly degenerate with the parameters of the dark matter halo. That MOND returns reasonable mass-to-light ratios is one of those important details that keeps me wondering. It seems like there must be something to it.

Unsurprisingly, once we fit the mass-to-light ratio and the nuisance parameters, the scatter in the RAR itself practically vanishes. It does not entirely go away, as we fit only one mass-to-light ratio per galaxy (two in the handful of cases with a bulge). The scatter in the individual velocity measurements has been minimized, but some remains. The amount that remains is tiny (0.06 dex) and consistent with what we’d expect from measurement errors and mild asymmetries (non-circular motions).

RAR_MCMCThe radial acceleration relation with optimized parameters.

For those unfamiliar with extragalactic astronomy, it is common for “correlations” to be weak and have enormous intrinsic scatter. Early versions of the Tully-Fisher relation were considered spooky-tight with a mere 0.4 mag. of scatter. In the RAR we have a relation as near to perfect as we’re likely to get. The data are consistent with a single, universal force law – at least in the radial direction in rotating galaxies.

That’s a strong statement. It is hard to understand in the context of dark matter. If you think you do, you are not thinking clearly.

So how strong is this statement? Very. We tried fits allowing additional freedom. None is necessary. One can of course introduce more parameters, but we find that no more are needed. The bare minimum is the mass-to-light ratio (plus the nuisance parameters of distance and inclination); these entirely suffice to describe the data. Allowing more freedom does not meaningfully improve the fits.

For example, I have often seen it asserted that MOND fits require variation in the acceleration constant of the theory. If this were true, I would have zero interest in the theory. So we checked.

Here we learn something important about the role of priors in Bayesian fits. If we allow the critical acceleration g† to vary from galaxy to galaxy with a flat prior, it does indeed do so: it flops around all over the place. Aha! So g† is not constant! MOND is falsified!

gdagger_MCMCBest fit values of the critical acceleration in each galaxy for a flat prior (light blue) and a Gaussian prior (dark blue). The best-fit value is so consistent in the latter case that the inset is necessary to see the distribution at all. Note the switch to a linear scale and the very narrow window.

Well, no. Flat priors are often problematic, as they have no physical motivation. By allowing for a wide variation in g†, one is inviting covariance with other parameters. As g† goes wild, so too does the mass-to-light ratio. This wrecks the stellar mass Tully-Fisher relation by introducing a lot of unnecessary variation in the mass-to-light ratio: luminosity correlates nicely with rotation speed, but stellar mass picks up a lot of extraneous scatter. Worse, all this variation in both g† and the mass-to-light ratio does very little to improve the fits. It does a tiny bit – χ2 gets infinitesimally better, so the fitting program takes it. But the improvement is not statistically meaningful.

In contrast, with a Gaussian prior, we get essentially the same fits, but with practically zero variation in g†. wee The reduced χ2 actually gets a bit worse thanks to the extra, unnecessary, degree of freedom. This demonstrates that for these data, g† is consistent with a single, universal value. For whatever reason it may occur physically, this number is in the data.

We have made the SPARC data public, so anyone who wants to reproduce these results may easily do so. Just mind your priors, and don’t take every individual error bar too seriously. There is a long tail to high χ2 that persists for any type of model. If you get a bad fit with the RAR, you will almost certainly get a bad fit with your favorite dark matter halo model as well. This is astronomy, fergodssake.

Subscribe to Our Newsletter for Discounts, Promotions & Latest News

Leave a Reply

Your email address will not be published. Required fields are marked *

17 − 14 =